Acta Cryst. (1952). 5, 390

Ethanolamine hydrogen d-tartrate: optical properties and X-ray diffraction data.* By E. G. Steward, Research Laboratories of The General Electric Company Limited, Wembley, England

(Received 28 November 1951)

Ethanolamine hydrogen d-tartrate, $C_6H_{13}NO_7$, may be crystallized from an aqueous solution containing the appropriate proportions of ethanolamine and d-tartaric acid.

The crystals, which are piezoelectric, belong to the monoclinic sphenoidal class and have the appearance shown in Fig. 1(a), the sphenoids $\{011\}$ and $\{1\overline{10}\}$ defining

Fig. 1. Crystal habit.

the general shape of the crystals. When grown rapidly from a highly supersaturated solution, however, needles with pronounced pinacoids $\{100\}$, $\{101\}$ and $\{10\overline{1}\}$ are formed (Fig. 1(b)).

The principal X-ray diffraction data and optical properties of these crystals are given below and in Table 1.

 $C_8H_{13}NO_7$. Molecular weight = 211·2. Density (18° C.) = 5·51 g.cm.⁻³.

Table 1. Principal 'powder' lines.

(Intensities visually estimated; d not corrected for absorption).

d (Å)	Intensity	d (Å)	Intensity
7.64	w	3.34	8
5.92	8	3.22	m– s
5.75	$oldsymbol{w}$	3.12	$oldsymbol{w}$
5.59	w	2.96	$oldsymbol{w}$
5.34	m	2.86	$w\!-\!m$
4.65	m	2.81	$w\!-\!m$
4.40	m	2.67	m
3.90	m	2.63	$oldsymbol{w}$
3.81	vs	2.40	$w\!\!-\!\!m$
3.73	m	2.38	m
3.56	w	2.11	$w\!\!-\!\!m$
3.46	m		

(w = weak; m = medium; s = strong; vs = very strong)

Dimensions (± 0.03 Å) of selected monoclinic structure cell:

$$a = 8.83, b = 7.51, c = 7.60 \text{ Å}; \beta = 92^{\circ}.$$

Molecules per unit cell = 8 (calculated density = 5.57 g.cm.^{-3}).

Probable space group: $P2_1-C_2^2$: 010 halved.

Cleavage: 001 (excellent).

Biaxial negative: optical axial angle (2V) approximately $19\frac{1}{2}$ ° at 18° C. (sodium light).

Refractive indices (± 0.001); sodium light; 18° C.:

 $\gamma = 1.551$ parallel to b.

 $\beta = 1.549$ parallel to a (to within $\frac{1}{2}$ °).

 $\alpha = 1.485$.

Dispersion: too weak for positive description.

Acta Cryst. (1952). 5, 390

A simple mechanical structure-factor computing aid. By V. Vand,* Chemistry Department, The University, Glasgow W. 2, Scotland (Received 12 December 1951)

A calculating analogue machine has been constructed which has proved useful in structure-factor calculations. It calculates simultaneously eleven values

$$C_n = \cos 2\pi (nu+m), \quad n = 0, 1, 2, \ldots, 10,$$

for any value of $0 \le u \le 1$ and $0 \le m \le 1$.

These two variables are fed into the machine by means of two hand-wheels. In order to reach a three-digit accuracy of setting, each variable is displayed on a pair of dials geared in a 1:10 ratio, the first dial reading the first digit, the second dial the second and third digits. The machine essentially consists of a $0:1:2:\ldots:10$ gearbox, in which the rotation u of the first hand-wheel is multiplied by n by a train of gears (see Fig. 1). The

* Imperial Chemical Industries Research Fellow.

rotation m is then added to each product, for example by means of a differential. The sum nu+m is then displayed as the angular displacement of the pointers on the eleven

Fig. 1. Principle of the machine.

^{*} Communication No. 488 from the Staff of the Research Laboratories of The General Electric Company Limited, Wembley, England.